Equations and Constants:

$$\bar{v} = \frac{\Delta x}{\Delta t}$$

$$v = \frac{dx}{dt}$$

$$\overline{a} = \frac{\Delta v}{\Delta t}$$

$$a = \frac{dv}{dt}$$

$$\overline{a} = \frac{\Delta v}{\Delta t}$$
 $a = \frac{dv}{dt}$ $\overline{v} = \frac{1}{2}(v_i + v_f)$

$$|g| = 10 \text{ m/s}^2$$

2013

$$x = \frac{1}{2}at^2 + v_i t + x_i$$

$$v = at + v$$

$$v = at + v_i$$
 $v_f^2 = v_i^2 + 2a\Delta x$ $R = \frac{v^2 \sin 2\theta}{a}$

$$R = \frac{v^2 \sin 2\theta}{g}$$

$$a_c = \frac{v^2}{r}$$

$$\sum F = mc$$

$$w = mg$$

$$w_{\perp} = mg\cos\theta$$
 $w_{\parallel} = mg\sin\theta$

$$w_{11} = mg \sin \theta$$

$$f = \mu N$$
 $F = -\frac{dU}{dx}$

$$F = -\frac{dU}{dx}$$

$$W = Fd\cos\theta \quad W = \int \vec{F} \cdot d\vec{x} \quad K = \frac{1}{2}mv^2 \qquad P = \frac{dW}{dt} \qquad P = Fv \qquad U_{\text{gravity}} = mgh \quad U_{\text{spring}} = \frac{1}{2}kx^2$$

$$K = \frac{1}{2}mv^2$$

$$P = \frac{dW}{dt}$$

$$P = Fv$$

$$U_{gravity} = mgh \quad U_{spring} = \frac{1}{2}kx^2$$

Multiple Choice: Choose the letter of the best answer. 3 points each. Unless otherwise stated, ignore the effects of air resistance. $|g| = 10 \text{ m/s}^2$ USE CAPITAL LETTERS!

Problems 1 to 3 refer to the following:

The potential energy of an object in a force field as a function of position is given by the graph shown:

- - What is the force on the object at x = 7 meters?
 - b. 2000 N
- c. 3500 N.
- d. 4000 N.
- e. None of those.

- At which of the following positions would the object be in a neutral equilibirum?
- b. x = 4 m.
- c. x = 5 m.
- d. x = 6 m.
- e. $x = 7 \, \text{m}$.

- What is the maximum kinetic energy the object could have and remain oscillating?
- b. 6000 J.
- c. 5000 J.
- d. 2000 J.
- e. 1000 J.

- - Imagine you have a kinetic energy of 2000 J. How much work would it take to double your = X4 K = 8000 K
- b. 4000 J.
- c. 6000 J.
- d. 8000 J.
- = +6000 5

- - What is a conservative force?
 - a. A force that only does negative work.
 - b. A force that only does positive work.
 - c. A force that can cause an object to go back to its starting point.

e. Need to know your mass and speed to answer the question.

- d. A force that does no net work on an object if it ends at its starting point.
- e. Ted Cruz.

Test: Work & Energy

Problems 6 and 7 refer to the following:

Object A is a pendulum pulled back so that it falls a distance H. Object B is an identical mass held at the same initial height as A. They are both released at the same time.

Which object will be going faster after falling through the height H?

- a. A. b. B.
- c. they have the same speed.
- d. it could be either A or B, depending on the initial angle of the pendulum.

Which object will take less time to fall distance H?

- c. they take the same time.
- d. it could be either A or B, depending on the initial angle of the pendulum.

Imagine getting a heavy box up a height of 2 meters by either lifting it straight up or pushing it up a ramp that was 6 meters long. It would take more work to push it up the ramp because

- Friction will do some work on the box.
- II. Because the normal force will do some work on the box.
- a. I only.
- b. II only.
- c. both I & II.
- d. none of those answers are right.

Problems 9 and 10 refer to the following:

The net force on a 3 kg mass as a function of position is shown in the graph below:

- What is the total work done on the object for the entire region shown? a. 80 J.
- b. 133 J.
- c. 180 J.

x (m)

10. C Assuming the object moved from x = 0 to x = 40, where would it be going the slowest? a. x = 0 m.

- b. x = 10 m.
- d. x = 20 m.

e. x = 40 m.

Problems 11 and 12 refer to the following:

Charlie lifts 50 kg 4 meters in 10 seconds. Kristen lifts 25 kg 8 meters in 8 seconds.

c. x = 15 m.

- Who did more work?
 - a. Charlie.
- b. Kristen.
- c. they were the same.
- d. impossible to tell.

- Who exerted more power?
 - a. Charlie.
- b. Kristen.
- c. they were the same.
- d. impossible to tell.
- A ball is tossed in the air and goes up and down. Which of the following would best represent its potential energy as a function of time?

- An object of mass 1 kg is whirled around in a horizontal circle of radius 0.5 m and at a constant speed of 2 m/s. The work done on the object during one revolution is:
 - a. 0 J.
- b. 1 J.
- c. 2 J.
- d. 4 J.

Test: Work & Energy

Problem Solving: Show all work.

Use work/energy principles! No eweryy - - b

15. A mass (m = 6 kg) is being pulled by a force (F = 50 N, θ = 35°) across a floor with a coefficient of friction ($\mu = 0.4$). It has an initial speed of 5 m/s and is pulled a distance of 7 meters. What is its final speed?

5 m/s and is pulled a distance of 7 meters. What is
$$\frac{1}{2}mv_i^2 - fd^{\frac{1}{2}} = \frac{1}{2}mv_f^2$$

$$\frac{1}{2}mv_i^2 - \mu(mg - Fsin\theta)d = \frac{1}{2}mv_f^2$$

$$\frac{1}{2}(6)(5)^{2} - (.4)[(6)(10) - (50) \sin 35] \stackrel{d}{+} (50) \cos 35 \stackrel{d}{=} (.4)[60 - 28.7] = \frac{1}{2}(6)^{4}$$

$$75 - (12.53)(7) +$$

$$75 - 87.7 + 286.7 = 3 V_f^2$$

$$274 = 3 V_f^2$$

$$V_f^2 = 9.56 \text{ m/s}$$

16. A 1.5 meter, 0.25 kg pendulum is pulled back an angle ø from the vertical and released. When it gets to its lowest position, the tension in the string is 3.5 N. What was the initial angle ø?

T- mg =
$$\frac{mv^2}{L}$$

3.5 - 2.5 = $\frac{(.25)v^2}{1.5}$

$$L_{3}$$
 $v = \frac{c_{1}c_{1}c_{2}}{m}$

$$mgh = \frac{1}{2}mv^2$$

$$mg(L-Lcose) = \frac{1}{2}mv^2$$

g L - gL coso = 12 v2 $1-\cos\theta=\frac{v^2}{29L}$

$$\cos \theta = 1 - \frac{(6)}{2(10)(1.5)} = .8$$

а

17. A 2.3 kg object is launched with a speed of 7 m/s up a frictionless track of base angle 35°. It slides up a distance of 2 meters and then hits a spring, causing the spring to compress a distance of x. The spring constant is 300 N/m. What is the height of the object when the spring is at its maximum compression?

$$sin\theta = \frac{n}{d+x}$$

$$h = (d+x) \sin \theta$$

 $h = (2+.41) \sin 35$
 $h = 1.38 \text{ m}$

$$\frac{Ei}{2} = \frac{Ef}{2mv^2} = mgh + \frac{1}{2}kx^2$$

$$\frac{1}{2}mv^2 = mg(d+x)\sin\theta + \frac{1}{2}kx^2$$

$$\frac{1}{2}(2.3)(7)^2 = (2.3)(10)(2+x)(\sin 35) + \frac{1}{2}(300)x^2$$

$$\frac{1}{2}(300)(7)^2 = (2.3)(10)(2+x)(\sin 35) + \frac{1}{2}(300)x^2$$

$$\frac{1}{2}(300)(7)^2 = (2.3)(10)(2+x)(\sin 35) + \frac{1}{2}(300)x^2$$

$$\frac{1}{2}(300)^2 + \frac{1}{2}(300)(2+x)(\sin 35) + \frac{1}{2}(300)x^2$$

$$\frac{1}{2}(300)^2 + \frac{1}{2}(300)(-29.97)$$

$$\frac{1}{2}(300)(-29.97)$$

$$\frac{1}{300}$$

$$\frac{1}{300} = \frac{1}{2}$$

$$\frac{1}{300} = \frac{1}{2}$$

18. An object is released from rest at a height H on a symmetrical track, with base angles ϕ . It travels up to a final height of H/2 on the opposite side. What was the coefficient of friction between the object and the track? E: - fd = Ex

$$H - m\cos\theta d - m\cos\theta \frac{d}{2} = \frac{H}{2}$$

$$\frac{H}{2} = \mu \cos \frac{3d}{2}$$

$$MCOSO = \frac{H}{34}$$

$$u\cos\theta = \frac{\sin\theta}{3}$$

$$\mathcal{L} = \frac{1}{3} \tan \theta$$

(d= sing